M-Convex Function Minimization by Continuous Relaxation Approach: Proximity Theorem and Algorithm
نویسندگان
چکیده
The concept of M-convexity for functions in integer variables, introduced by Murota (1995), plays a primary role in the theory of discrete convex analysis. In this paper, we consider the problem of minimizing an M-convex function, which is a natural generalization of the separable convex resource allocation problem under a submodular constraint and contains some classes of nonseparable convex function minimization on integer lattice points. We propose a new approach for M-convex function minimization based on continuous relaxation. We show proximity theorems for M-convex function minimization and its continuous relaxation, and develop a new algorithm based on continuous relaxation by using the proximity theorems. The practical performance of the proposed algorithm is evaluated by computational experiments.
منابع مشابه
MATHEMATICAL ENGINEERING TECHNICAL REPORTS Discrete L-/M-Convex Function Minimization Based on Continuous Relaxation
We consider the problem of minimizing a nonlinear discrete function with L-/M-convexity proposed in the theory of discrete convex analysis. For this problem, steepest descent algorithms and steepest descent scaling algorithms are known. In this paper, we use continuous relaxation approach which minimizes the continuous variable version first in order to find a good initial solution of a steepes...
متن کاملProximity theorems of discrete convex functions
Aproximity theorem is astatement that, given an optimization problem and its relaxation, an optimal solution to the original problem exists in acertain neighborhood of asolution to the relaxation. Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete resource allocation problems. After reviewing the recent results for $\mathrm{L}$-convex and...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملThe 0–1 Knapsack Problem: A Continuous Generalized Convex Multiplicative Programming Approach
In this work we propose a continuous approach for solving one of the most studied problems in combinatorial optimization, known as the 0–1 knapsack problem. In the continuous space, the problem is reformulated as a convex generalized multiplicative problem, a special class of nonconvex problems which involves the minimization of a finite sum of products of convex functions over a nonempty conve...
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 21 شماره
صفحات -
تاریخ انتشار 2011